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• i̧ /

COMPARISON OF _WO CONFORMAL MAPPING TECHNIQUES

APPLIED TO AN AEROBRAKE BODY

Conformal mappir, g is a classical techr, ique which has

beer_ utilized for solvir_g problems in aerodynamics and

hydrodyrJamics for many years. CorJfc, rmal mapping has beers

successfully applied in the cor, struction of grids arour, d

airfc, ils_ engine inlets ar,d other aircraft cot, figurations.

These shapes are trar, sformed or,to a near-circle image for

which the equations of fluid motion are discretized on the

mapped plar, e arid solved numerical ly by ut i 1 izing the

appropriate techniques. In comparison to other grid-

ger, eratiorJ techniques such as algebraic or differerJtial

type, conformal mapping offers an ar_alytical arid accurate

form even if the gri_ deformatiorJ is large. One of the

most appeali_,g features is that the grid car, be cot, strained

to remain orthogor, al to the body after the trar, sformation.

Hence, the grid is suitable for analyzir, g the supersonic

flow past a blunt object. The associated shock as a

coordinate surface adjusts its positior, ir_ the course of

computat ion urst i I cor_vegerJce is reached.

I_ the present study, co.formal mapping techr, iques have

been applied to a_ Aerobrake Body havir, g a_ axis of

symmetry. Two different approaches have bee_ utilized:
(1) Karma_-Trefftz Tra_sformatio_

(2) Point-Wise Schwarz-Christoffel Transformatio_

I_ both cases, the Aerobrake Body was mapped o_to a r,ear-

circle, and a grid was _er, erated in the mapped plar, e. The

mapped body and grid were the_ mapped back i_to physical

space a_d the properties of the associated grids were

examir:ed. Advantages and disadvantages of both approaches

were discerned.
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i_- I_,troduct ion

A problem of interest to NASA involves the hypersonic

flow past an ae_ob_akirsg orbital t_ansfe_ vehicle. As

summarized by Li (1), several schemes have been utilized tc,

simplify the numerical treatment of the problem. A p_ima_y

simplification irJvolves the mapping of the characteristic

mushroom shape of the aerobrake vehicle onto a near-circle,

gev,erating a g_id, solving the Navier--Stokes equations in

the mapped plane, av,d subsequently ;napping the solution

back into physical space.

In examining the features of the grids generated by

this procedure, competitive alternative methods have been

re-discovered from elementary complex number theory. The

two complementary methods of interest in the present study

are as follows:

(i) Karman-Trefft z T_ansfo_mat ion

(2) Point-wise Schwa_z-Christoffel T_ansformation.

In the following brief _eport_ both transformations a_e

examined with respect to their suitability for t_ansfo_ming

the ae_ob_ake vehicle to a shape suitable fo_ a_ existing

Nay ier-St okes computer cod e, and conc Ius ions and

recommendations regarding the two transformations are made.

Final ly, in order to gaiT, deeper insight into the

transformations, a simple square is also transformed by

both methods, and the _esulting grids examined as well.
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__ KaYman-Trefft z T_ansformat ic0n

The Karmar,-Trefftz transfc,_mation, which maps the z-
plane into the w-pl ane, is giver, by the fc,1 1owirsg
re i at i or,sh i p :

w-_,_
W,! F.',.kv ]

where z repYesents the complex physical plar, e x+iy; w

_ep_esents the cornplex ;napped plane u+iv; _ is a real

r,uynbeY to be defir_ed below! arsd h is a "hinge pc,irst_ " which

is apc, irJt in the vicinity of some point of inteYest on the

body being tYar, sfoYmed. The t Yar, sfo_mat ion has the

p_ope_ty c,f smoothir, g out coYrJeYs or, the physical bc,dy,

facilitating the geneYatior, of a grid aYound the body.

Each sharp coYr, e_ on the body is smoothed out in turf, by

_epeated appl icat ior, s of the cu_YerJt trar, sfoY;nat ion to

every point on the body, each tYar, sf_c, rnatic, r, havir, g a
specific value c,f h and _ . The _eal numbe_ _ is

evaluated as follows:

-rr (2)

where _;_ is the inteYio_ angle fo_med at a given corr, e_ c,f

the physical body. Fol lowing Mo_ett i (._), _epeat ed

applications of the tYansfo_mation aye applied in o_deY of
inc_easir, g_ . It, the following figures, tYansfoYmations

a_e applied to a mushYoom-shaped Ae_obrake Body. Note it,

part icula_ the values fo_ h and _ fo_ each

t_ansforrnat ion. Also note that the actual g_id is

generated in the mapped plane, where the body has come to

Yesemble a nea_--ci_cl e, by construct ing equiangul a_ly

spaced Yadial lines and thei_ oYthogor, al complements. The

g_id and body aye then ;napped back into physical space by

reveYsir,_ the tYans_oYmations. The cc,mputeY p_og_arn fo_

this pYocess is listed in Appendix 1.

Figure 1 shows the initial mushroom configuYation, with
the shaYp corr, e_s numbered in the oYde_ to be tYansfo_med.

Note that the _i_st ar,g le to be t_ansfo_med is the

perper, diculaY angle at point 1, so the e_pone_t ir_ the
t_ansfo_mat ion is _13. The _esult o_" this fiYst

t_ar, sfo_;natior, is giver, in Figure R_ where the the shaYp

angles at points R and 3 aye seen to persist, but the

cc,rr,e_ at point 1 has now bee_ smoothed out. Again the

pe_per, diculaY co_ne_ at R is chosens so the exponer,t is

R/3, and the Yesult of this t_ar, sfo_mation is show;, in

Figure 3. Finally, the co_ne_ at point 3 is t_ansfo_med by

usin_ at, expor, er,t c,f _, ar:d the -- "r,ea_ cz_cle of FiguYe 4 is
obt a ir,ed.
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Next, equi-ar, gular radial liv, es are cc,r,structed from

the origir,, as well as their c,_thogc, r,al complemev, ts, as

shown its Figure 5. It is this set of poiwts which a_e

mapped back into the physical plav, e to become the g_id iv,

physical space. At this poiv, t, moreover, it is ev,visiov, ed

that the flow past the Ae_obrake body could be obtaiwed

v,ume_ically, utiliziv, g an existing Navies-Stokes compute_

code. Figures 6-8 show the _esultiv, g mesh iv, physical at

successively improved levels of _e1"inemev, t.
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2- Schwarz-Ch_istc, ffel T ransfoemat ion

The basic idea for an alternative transformation is

preserJted by Hall (3), who refers to it as a "point-wise

Schwarz-Chri stoffel transformat ion. " Strict ly speaking,

however, the transformation is simply a power-law

transformation taken from elementary complex number theory

(Spiegel (4)). Mot ivat ion 1,or the transformation is

presented in Figure 9, where it is seen that points on the

positive _eal axis in the physical plane remain on the real

axis in the mapped plane, while points lying or, a _ay at

arsgle in the physical plane are mapped onto the negative

real axis in the mapped plane. Repeated applications of

the t_ansformation to every point on the physical body

allows the mapping of the physical body onto the real axis.

Finally, a grid car, be generated iv, the mapped plane and

mapped back into physical space using the inverse

t ransformat ions. However, unl i ke the Karman-Trefft z

transformation_ the utilizatiov, oi" polar coordinates in

the mapped plane 1"or grid generation was 1"ound to provide

in1"erior grid properties compared with the use o1" Cartesian

coordinates in the mapped plane, because the axes in the

mapped space do not co_respov, d to 0=0 av,d in the

physical space. The 1"ollowing 1"igures show that the grid

gene_at ed is o1" no practical use. A listing o1" the

computer program ut i I i zed for the Schwarz-Ch_i st of f el

t_ans1"ormation is given in Appendix _.

Figure 10 shows the Aerobrake body in its initial

o_ientation. It has beer, rotated with respect to Figure 1

so that the exponent iv, Figure 9 will be 1"iv,ire. The

compute_ p_ogram then calculates the angle which a line

f_om point 0 to point i makes with the _eal axis, and

calculates the exponent for the first t_ans1"ormation. This

tra_,sfo_;nation results it, the moving o1" poir,t 1 to the real

axis, as shown in Figure 11. Note that point R has beer,

"lost" in Figure 11, due to interpolation. A mo_e re1"ined

_epresentation of the body shows that this e_ror car, be

made a_bitra_i ly smal 1. A It e_at ively, an improved

interpolat ion rout ine wi 1 1 el iminat e this p_oblem

altogether. Ne_t, point R is brought up to the _eal axis,

as sho_n in Figure 12, 1,ollowed by the positiov, ing o1, point

3 or, the real axis_ as shown in Figure 13. Finally, point

4 is b_ought up to the real axis by yet another

t _ans1,o_mat i on_ whereupon t he Kut t a-Joukowsky

t_ansfo_mation is applied to ;nap the t_ansformed body onto

a near-circle, as shown in Figure 14. Now equi-angular

_adial lines and their oft hogo_|a i complements a_e

constructed_ as shown i_ Figure 15. Now, however, when the

_esulting grid is mapped back into the physical plane, the

g_id is seen to overlap into the lower hal1" plane, as shown

in Figure 16. This is clea_ly an unacceptable g_id fo_

comput at ior,.
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It is noted that the creation of a g_id in the mapped

plane utilizing pola_ coordinates fails to generate an

acceptable g_id in the physical plane due to the covering

of more than the upper half plane in the latter by the

uppe_ half plane in the mapped plar,e. It, orde_ to overcome

this shortcoming_ various schemes were tried_ including the

addition of a tail to the mushroom in the physical plane_

also the utilization of a quarter circle in the mapped

plane instead of a semi-circle. The _esults of these

attempts are presented in Figures 17-19. The introductio_

of a singularity downstream of the mushroom is evident. It

became evident that the i_termediate utilization of the

Kutta-Joukowsky t_a_sfo_matio_ to map the _eal a_is o_to a

circle is not appropriate fo_ the point-wise Schwa_z-

Christoffel t_a_sformation. Rathe_ the g_id is to be

generated by Cartesia_ coordinates in the mapped plane, as

shown in Figures 20 a_d 21.
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4. Transformation c,f a Square

As noted earlier, it was desired to transform a simpler

shape in order to gain insight into the transformations. A

square was chosen for this effort, and the results are

presented in the following figures. Trends similar to

those observed for the mushroom are noted.

Figure 2_ shows the squawe after the first Karman-

Trefftz transformation has been applied. One conner has

been smoothed out, and one wemains. Figure _3 shows the

square aftew the second cornew has been wemoved. It is

this latter shape which is utilized in Figure _4 low the

construction of a polar grid, similar to what was done in

Figure 5 for the Aewobwake body. Figuwe 25 shows the grid

after the first invewse transformation, and Figure 26 shows

the final grid in physical space.

The owiginal squawe is shown in Figure 27, with the

point-numbering convention for the Point-wise Schwarz-

Chwistoffel transformation. After moving point 1 down to

the real axis, the squawe takes on the shape shown in

Figure 28. The next transformation moves point 2 up to the

weal axis, as shown in Figure _9; followed by the

positioning of point 3 on the weal axis as shown in Figure

30. Again the Kutta-Joukowsky transformation is applied,

giving the near-_iwcle shown in Figure 31. The polar grid

is constructed in Figure 32_ and the first i_verse

twansfowmation yields the gwid shown in Figuwe 33.

Howevew, Figure 34, which displays the wesult of the second
invewse twansformation, indicates t_ouble in that the grid

begins to ovewlap itself. Figuwe 35, the gwid in physical

space, shows that, although the square has been

successfully mapped back into physical space, the gwid has

not fared so well. Appawently, Figure 33 contains the

explanation low the failure. Pant of the grid in Figuwe 33

lies at an angle with the _eal axis which is gweater (Mowe

negative) than that of line segment _-3. It is this

powtion of the gwid which cannot be successfully ;napped

back into physical space, pwobaDly because it is on another

branch. Again_ a Cartesian coordinate system is

constwucted in Figuwe 36, cowresponding to Figure 20 low

the Aerobwake body. When this is mapped back into physical

spcae, Figure 37 wesults. The odd shape of this grid at

infinity is clearly unacceptable. Instead, a tail is added

to the squawe, both upstweam and downstweam, and the

_esults are show_ i_ Figures 38 and 39. The reaw side of

the square has been "lost" again, due to the intewpolation

scheme, as ca_ be seen by comparing Figures 38 and 39.
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5._ Conc I usi o_Js and Recc, mTnerJdat ions

Table i summarizes the advawJtages and disadvantages c,f

the two transformations. It is seen that both have

compl eme_,t ary advantages and disadvaw, t ages. Ow_e

disadvantage of both transformations which is listed it,

Table i refers to poor resolution at concave corners. This

is wJc,t a serious disadvar, tage, at least for the flow past

the Aerobrake Body, because the flow iv, this regic, w, is of

lesser interest.

Based or, the results, the following recommendations are

offered :

1. The Karman-Trefftz transformation appears to be

best suited to finite bodies around which the entire flow

field is desired. The type of mesh which results under

this transformation is an "0" mesh.

2. The point-wise Schwarz-Christoffel transformation

appears to be best suited to Jr, finite bodies, or fir, ire

bodies with long trailing wakes. The type of mesh results

under this transformation is a "C" mesh.
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